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The condensate equation for some Bose systems 

E Buffett, Ph de SmedtSS and J V PulCSII 
+ Department of Mathematical Physics, University College, Belfield, Dublin 4, Ireland 
$ Instituut voor Theoretische Fysica, Universiteit Leuven, B-3030 Leuven, Belgium 

Received 10 May 1983 

Abstract. The exactness of the Bogoliubov approximation is discussed from the point of 
view of the condensation properties of the Bose gas. For the imperfect Bose gas, we find 
that the approximation yields the correct condensate density when the thermodynamic 
limit is taken by isotropic dilation; this is not the case in general for other ways of going 
to the infinite volume limit. We also prove the existence of Bose-Einstein condensation 
for a class of Bose gases with weak interactions and an energy gap. 

1. Introduction 

Since its introduction in 1947 (Bogoliubov 1947), the Bogoliubov approximation has 
been used extensively in condensed matter physics, but it was as late as 1968 before 
Ginibre (1968) provided a mathematical justification of the procedure. At that stage, 
the way was paved for using Bogoliubov’s method to deduce exact results on Bose- 
Einstein condensation, though very few authors seem to have worked along these 
lines. In this paper, we shall prove some exact results about the Bogoliubov approxima- 
tion; our main concern will be the mean-field Bose gas, but we shall also discuss a 
class of perturbations around this system. 

The basic idea of the Bogoliubov approximation is to replace the ground-state 
annihilation and creation operators ao, a,* in the Hamiltonian H V  of the interacting 
Bose gas by complex parameters V1”a, V”2G, V being the volume of the region 
containing the system. One obtains in this way a new Hamiltonian H,” ( a )  for each 
value of a, and a corresponding pressure: 

(1) 

The physical value a,” of the parameter a is determined a posteriori by the condition 
that P,” ( a )  attains its maximum at a,”: 

P,”(a) = (j3V)-’ log Tr exp(-PH,” ( a ) ) .  

P,”(a;’) =supP ,” (a ) .  LI 

We shall refer to ( 2 )  as the condensate equation, though in the literature (Ginibre 
1968) it is the necessary condition 

(aP,”(a,V)/aa) = 0 (3) 

9: Aspirant NFWO. 
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which is given this name. Since by gauge symmetry P,”(a) is a function of /CY/  only, 
we shall take a to be real and positive throughout this paper. 

As already mentioned, Ginibre (1968) gave a rigorous proof that for a large class 
of interactions the approximation is thermodynamically exact, that is to say that 
limV+m P: (a: )  yields the exact pressure of the infinite system. A much more involved 
question is that of the exactness of the Bogoliubov approximation from the point of 
view of the condensation properties of the system, i.e. the relation of (a:)’ to (a;ao/ V). 

(4) 

In fact Ginibre’s method can be used to prove that, if one defines 

rrV(u) = (pV)-’  log Tr exp[-p(HV -aa$ao)]  

then rrV(a) is asymptotically equal in the thermodynamic limit to the Legendre 
transform of -P,”(a) with respect to a’, namely: 

rrv(u) - sup[ua2 + P,” ( a ) ]  
V - a  a 

This leads us to expect that the probability distribution of the condensate density 
a;ao/ V (viewed as a random variable) is asymptotically concentrated on the subdiffer- 
entia1 of r ( u )  of u=O (see Lewis and Puli (1983a) for a similar discussion on the 
overall density), and therefore on the set of solutions of the asymptotic condensate 
equation; in particular, in cases where the solution a. of the asymptotic condensate 
equation is unique, the condensate density should be degenerately distributed at the 
corresponding value a i .  As yet we are not able to prove these conjectures in general, 
but our claims can be verified rigorously for the imperfect Bose gas, i.e. in the case 
of a mean-field repulsive interaction (see theorem 1 in 0 2 and proposition 3 in 0 4). 

From this point of view, the next step in the study of Bose-Einstein condensation 
is to examine the non-zero solutions of equations ( 2 )  and (3) and their behaviour as 
V tends to infinity. A simple gauge argument (Ginibre 1968) shows that a = 0 is 
always a solution of equation (3). It is reasonable to expect that the onset of Bose- 
Einstein condensation (i.e. the emergence of a non-zero solution) is accompanied by 
a change in the nature of the stationary point a = 0 from a maximum to a minimum 
of P: ( a )  (in bifurcation language the trivial solution a = 0 becomes unstable when 
the bifurcation parameter F crosses a critical value). This, together with bounds which 
ensure that P:(a)  decreases faster than -a4 for a large (Ginibre 1968), suggests the 
following tentative picture to characterise Bose-Einstein condensation ( V large 
enough, see figure 1 ). This picture is justified by our study of the finite volume imperfect 
Bose gas in 0 3 (see theorem 2 ) .  

But in the infinite volume limit, the Bogoliubov pressure of the imperfect Bose gas 
becomes concave, with (for F large enough) a flat part starting at a = 0 (see proposition 
1). At first sight it might be disappointing that the condensate density cannot be read 

Figure 1. Tentative characterisation of Bose-Einstein condensation. 
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off the shape of P B ( a )  = limv+= P," ( a ) .  However, this should not come as a surprise 
in view of the fact that it is possible to exhibit Bose systems which have the same 
thermodynamic functions, but which differ drastically in their condensation properties 
(Van den Berg and Lewis 1980). Hence one should not expect that a purely thermo- 
dynamic quantity like P,(a) will prescribe the condensate density; at most it will 
provide an upper bound on the latter. This also fits in very well with the result of 0 2 
which shows that the support of the probability distribution of the condensate density 
is contained in the interval on which P B ( a )  is flat (theorem 1). The fact that a = 0 is 
always a global maximum of PB(a) appears to hold even in interacting Bose gases. 

To obtain more detailed information, one has to study equation (2) at finite volume, 
and different ways of going to the infinite volume limit may then lead to different 
values of the limiting a,  on the plateau of PB (see figure 2). 

Figure 2. Two ways of approaching the thermodynamic limit leading to different values 
of (10. 

Now this dependence on the way the thermodynamic limit is taken is a property 
shared by the exact condensate density. It is thus tempting to conjecture that the 
limiting value of the solution to  the finite volume condensate equation yields the correct 
condensate density under all circumstances. We show by means of a counter example 
that it is not so. In detail, we study in 0 3 the imperfect Bose gas in a volume V which 
goes to infinity 

(i) in an isotropic way; 
(ii) in some prescribed anisotropic way. 
In case (i), a: converges to the right-hand endpoint of the plateau of PB (see 

theorem 2) and this gives the exact condensate density (which is known from the direct 
theory (Fannes and Verbeure 1980, Buffet and Puli 1983)). In case (ii), the limiting 
value of a: bears no relation to the condensate density (see proposition 2);  incidentally, 
the latter assumes different values in cases ( i )  and (ii) (see theorem 3). 

Hence we have at hand a simple model in which the widely accepted Bogoliubov 
approximation fails to predicf the condensation properties of the Bose gas. The 
limitations of this method should be kept in mind when applying it to more complicated 
situations. 

We conclude our work with the study of interacting Bose gases with a gap in their 
single particle energy spectrum. If the interaction is weak enough and the chemical 
potential large enough, one can show that P," ( a )  takes its maximum in a region not 
containing zero, even in the thermodynamic limit (theorem 5). This strongly suggests 
existence of Bose-Einstein condensation, and we also provide a direct proof of the 
occurrence of this phenomenon (theorem 4). 
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Before proceeding to the next section, we make precise the definitions of some 

Consider a Bose gas contained in A ", a cuboid in R3 with sides Val, bV"2, cVa3 where 
quantities discussed above. 

a I  3 a 2 3  a3> 0 a1 + a2+a3= 1 bc=1. (6) 

Let 9" = S,(O"L2(A")) be the symmetric Fock space constructed out of L2(A"). 
Let N V  be the number operator on S", and a ( f ) ,  a*(f)  the annihilation and creation 
operators ( ~ E L * ( A " ) ) .  Denote by 4 : ( k z 0 )  the eigenfunctions and by E: ( O <  
E l  < E ," S .  . .) the eigenvalues of the self-adjoint extension of the operator --;A with 
Dirichlet boundary conditions on L2(A"). We write ak, a: and N: for a(c$; ) ,  
a * ( 4 : )  and a*(c$ : )a ($~; )  respectively. 

Now let A: be the one-dimensional subspace of L2(Av) generated by 4;. Then 
SV = 9," 0 S,", where 9," and 9," are the Fock spaces constructed out of AI: and 
(AT)' respectively. For each A E @, we define a coherent vector CA in 9," in the 
usual way: 

a2 

CA =exp(-1AI2/2) 2 A'(4r)@'/(1!)1'2. 
/ = 0  

(7) 

Following Ginibre (1968), we associate to each operator A on 9" its Bogoliubov 
approximate AB(a),  which is the operator on 9," defined by 

( 4  Ada)ICl)y:=(Cmvl/2@4, A C , V I I ~  @ + ) o v  Vc$, * E 9,". (8) 

Finally, let H V ( p )  be the grand canonical Hamiltonian of the system (including 
the term - p N V ,  p being the chemical potential), and H," ( p ,  a )  its Bogoliubov 
approximate. The conditions under which one can make sense of H," (p ,  a )  as a 
self-adjoint operator are discussed in Ginibre (1968); assuming that these conditions 
are met, it follows that exp[-PH; ( p ,  a ) ]  is trace class, and one can define (in complete 
analogy to the ordinary pressure) the Bogoliubov pressure 

PB" ( p ,  a )  = ( P W - '  log Tr3y exp[-PH," ( p ,  a ) ] .  (9) 

Its infinite volume limit (whenever it exists) is denoted by PB(p, a ) .  

2. The probability distribution of the Bose-Einstein condensate in the imperfect 
gas 

Let us briefly recall the main features of the imperfect Bose gas (see Fannes and 
Verbeure 1980, Buffet and Pul6 1983, Davies 1972). Let HT =Xk30EkVa:ak be the 
kinetic energy of the particles. Then the Hamiltonian for the imperfect gas is defined 
as 

The Qresence of the second term embodies the assumption that the interaction energy 
between two particles is a /  V, irrespective of their mutual distance. If p o ( p ) ,  p o ( p )  
are the pressure and density of the infinite free Bose gas at chemical potential p s 0 
and if pc is the critical density for the same system, the pressure and density for the 
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infinite imperfect Bose gas are given by 

where pc=upc  and y is the unique ( p  dependent) solution of the equation y =  

Suppose that we remove the lowest energy level E: from the system described 
above; we would then obtain another system which has the same pressure and density 
in the thermodynamic limit as the original case. We shall place a tilde over all quantities 
pertaining to this modified system, in particular: 

P - a P o ( Y ) .  

G V  = N V  -NO” Eiv(p) =H:  -E:N: + ( ~ / 2 v ) ( f i ~ ) ~ - ~ f i ~ .  (13) 

H,” ( p ,  a )  = (E:  - p ) a  v + &a4 v + &a2 + Ei ” ( p  - aa 

The Bogoliubov approximation to the Hamiltonian is then 

(14) 

and the Bogoliubov pressure is therefore (with F ” ( p )  denoting the pressure of the 
modified system): 

~ , “ ( p $  a )  = - ( E ,  - p ) ) a ’ - ~ a a 4 - a ~ 2 / 2 ~ ~ + ~ V ( p - a a 2 ~  (15) 

(16) 

V 

from which it follows immediately that 

P B ( ~ ,  CY) = p a 2 - + a a 4 + p ( p  -ua2)  

with p as in (1 1). 
PB( p, a )  has the following properties. 

Proposition 1. 
( i )  a + P B ( p ,  a )  is concave and non-increasing; 
(ii) for p < pC:a + PB(p, a )  is strictly concave and decreasing; 
(iii) for p 2 pC:n + PB(p,  U )  is constant (and equal to p ( p ) )  for a S ( p ( p )  - P ~ ) ” ~ ,  

a + PB(P,  a )  is strictly concave and decreasing for a > ( p ( p )  - P , ) ” ~ .  

Proof The proof follows immediately from the following properties of p ( p ) :  

P ( P )  > P / a  for CL < Pc 

P ( F )  = F / a  for p 5 pc 

Now, denote by Q V ( n )  the orthogonal projection onto the subspace of SV with 
exactly n particles in the state 4:. We can consider N: / V as a random variable and 
define its corresponding probability measure [FD; by 

. (19) 
Tr4V exp(-PH ( p )) Q ( Vx) 

Trg” exp( -PH” ( p ) )  
~ ~ { x ) = P r o b a b i l i t y { N ~  / V = x ) = ( Q ” (  V x ) ) =  

In the following theorem we prove that in the thermodynamic limit the probability 
measure P r  is concentrated on the set of values a which maximise P B ( p ,  a ) .  The 
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technique we use is an adaptation of the one used in Lewis and PulC (1983a) for the 
probability measure corresponding to the particle density. 

Theorem 1 .  If cyl  is such that PB(p, aI)<sup,PB(p,  a ) = P B ( p , O ) = P ( u )  then 
1imv+= P,V{N,V / v 2 a’}  = 0. 

un a n 
v 2 v v  

a 

X 1 
rrv(a)=-log 1 exp(pV) pv n = O  

1 
=-log{ P V  [ O , C o )  e x p [ P V ( u x + - x + P ~ ( p , x ” ’ ) ) ]  2 v  dm(Vx) (26) 

where m is the counting measure. 

ately that 
Using the version of the Laplace theorem stated in the appendix, we have immedi- 

(27) ..(U) E V-aC lim r V ( u )  =SUP(UX + P B ( ~ ,  x ” ~ ) )  =sup(ua2+ a pB(p, a ) )  
x a o  

and therefore 

7: (0) = s u ~ ( c u ’ :  P B ( p L ,  a’) =SUP a PB(p, a ) } =  (max{O, p ( p )  - p ~ ) ” ~  (28) 

where r : ( O )  denotes the right-hand derivative of r at 0. Moreover for a> 0, r(u) 
is continuously differentiable and strictly convex. Therefore, we can find S > 0 such 
that ~ ’ ( 6 )  < a1 and hence r ( 6 )  - r ( 0 )  < alS.  Now 

P l [ N r  / V 2 a,]= I d P r ( a )  
ra1.m) 

exp[-p(a,- a )SVl  dP:(a) s exp[-p(al - a)SV]  dP:(a) 4 [ O , % n o )  io.=) 

=exp[-pV(Sa, - r v ( ~ ) + r v ( ~ ) ) ]  

which tends to 0 as V tends to infinity. 
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Before proceeding to the next section, we remark that, as for the particle density 
(see Lewis and Pult 1983a), P:[Nz / V 2 a l ]  decreases exponentially with the volume. 

3. The condensate equation for finite volume 

Since P i  ( a ,  p )  tends to --CO as a+ -CO, it must attain its supremum at least at one point 
and at this point equation (3) must be satisfied. For the imperfect gas (3) becomes 
(with = d F v ( p ) / d p )  

2 a [ ( p  - aa2)  - U; ”( p - ~ a ’ )  - E,V - U /  2 VI = 0. (29 )  

We shall study equations ( 2 )  and (29 )  in two cases differing in the way that the region 
A V  becomes infinite. In the first case (isotropic dilation) we take a ,  = a2 = a3 = 2 and 
b, c distinct and not equal to 1 (see (6)), so that the eigenvalues {E:}  are related to 
{ E : }  by EL = V-2’3E: and E :  <E:.  The case where E :  = E :  requires a separate 
but similar analysis and yields the same conclusions. For this family of regions, the 
imperfect gas has the property that (Fannes and Verbeure 1980, Buffet and Pult 1983) 

1 

In the following theorem we prove that any sequence of solutions of ( 2 )  also gives 
this value in 

Theorem 2. 
a a - 4  be a 

Proof. Put 

the limit. 

Consider the mean-field Bose gas in an isotropically dilated box. Let 
point at which p,”(a, p )  attains its supremum. Then 

g ”( U )  = (T - U p ’ ” ( U )  - E: - a / 2  v. 

dP,V(p, a ) / d a  = 2 a g V ( p - a a 2 ) .  

(32) 

Then, with (15) 

Now from (17) and the uniformity (on compact intervals) of the convergence of ; “ ( U )  
to p ( ~ )  we deduce that for any E > 0 

g V ( 4  < o  when U < ~ ~ - U E  and V is large enough. 

Hence, for a’> ( p  - p J / a  + E and V large enough: 

aP,” ( p ,  a)/aa < 0. (33) 

This yields two conclusions: 
(i) if p <pc, limv,, a: =0 ,  proving (31a); 
(ii) if p 3 p u , ,  ( a K ) ’ < p ( p ) - p c + &  for V large enough. 

To have (31 b), it is sufficient to show that the following inequality holds when p > p, 
and V is large enough: 

(34) (4 l2 > P(F  1 - Pc - E. 
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This will hold if we can show that for V large enough g " ( u )  is positive for all values 
of U in [pc + a&, p]. This in turn wiil follow if we can prove that I V( a - ab" ( a )  - E y ) I  
is uniformly bounded for all 

E Buffet, Ph de Smedt and J V Pule' 

a E [ p u , + a E , p l  ( 3 5 )  

because of the identity: 

g "( U) = V-"'[( E ;  - EA) + V2'3( a - ab"( a)  - E 1" ) - iaV-.'''], (36) 

We now prove (35): with a> pc one has p ( a )  = a / a ,  and thus 

where 2," denotes the canonical partition function of the related free system. If 

we know from (Buffet and Pule 1982, theorem 4) that 

X 1 
p e x p [ - p V ( P " - p ( o ) E ~ ) ]  1 2; exp 

n =o 
(39) 

converges to JTz dx exp(-iapx') > 0 uniformly for a E [pc+ E ,  p ] .  
It remains to prove that 

x exp[ - P V ( P "' - p ( a )  E ," )] (40) 

is uniformly bounded in modulus for U E  [pc+ae,  p]  and for V sufficiently large. Take 
 EN such that ( n i ) - 1 ) / V - p ( a ) f E T / a < O ~ n o / V - p ( a ) + E ~ / a .  Let 6" be 
equal to V"*(no/ V - p ( a ) +  E l / / a )  and let M" be the measure concentrated on the 
points { V " Z ( n / V - p ( a ) + E ~ / a ) - 6 " :   EN} which gives weight l / V 1 / '  to each of 
these points. Then, since 6 is chosen such that for any n E N, V"*(n /  V - p "  ( a )  + 
Er  / a )  - 6 '' is of the form m /  VI'' with m E Z, A' can be written as 

(41) 

where f "  ( y )  = G ' ( y ) - E y y + P ' ' ,  4" being the canonical free energy obtained from z;, i.e. 2," =exp[-PVG"(n/V)]. If b = i ( p ( a ) - p , ) ,  then the contributions to A" 
coming from the integration over [- V"*(p(a)  - E ?  / a )  - 6",  - V"'b) and (V"*b, "3) 

tend to zero since f " ( y ) Z O  (see Buffet and Pule 1983, theorem 4).  The remainder 
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can be written as 

- ( x -  6 ”) exp(-PV[f”(p(cT) - E ,” / a  - x/ VI”+  6’ / 

Now, using the mean value theorem, the convexity (Davies 1972) and the positivity 
of f” (Buffet and Pul i  1982), and the fact that 6”  < 1/ we find the following 
upper bound for the absolute value of (42):  

X exp(pax/ V”*)M”(dx)  

+ 2  exp(PV(E:)*j2a) exp(Pax/ VI’*) exp(-$ax2)Mv(dx) 

+ v-”’ exp[PV(E,V ) * / 2 a ]  (43) 

where fY denotes the right-hand derivative of f”. 
But Vf”(y) is a convex function and for y > pc, since Vf”(y) + 0 (Buffet and PulC 

(1983) formulae (251, (34)), we have Vff”’(y) + O  (Griffiths 1964, Griffiths’ lemma). 
Therefore (43) converges, but, since (43) is also independent of a, we have proved 
that A ”  is uniformly bounded in modulus for V large enough and thus also V(cr- 

Next we turn to an anisotropic way of going to the infinite volume limit; specifically 

5,: 

Up’”(  (+) - E: ).  

we choose the parameters in (6) to be 

cyl  = $  a3 = ;- cy’ i s  c y 2 < ; .  (44) 
The grand canonical free Bose gas in regions of this type has been studied in great 
detail by Van den Berg and Lewis (1980). In particular, it is known that for mean 
density p > pc, the limiting value of ( N l /  V):c,free is the solution po of the equation 

where the numbers &k =;(k+1)’7r2 are the eigenvalues of -id2/dx2 on [0, 11 with 
Dirichlet boundary conditions. Our next theorem solves the same problem for the 
imperfect Bose gas. Now, because of the strict equivalence of ensembles for the 
imperfect Bose gas (Buffet and PulC 1983) and of the peculiar nature of the mean-field 
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interaction, this problem amounts to solving the canonical free Bose gas at the same 
density (see Buffet and PulC 1983). Solving this problem, we find that the answer 
differs from (45); this is yet another example of a pathology associated with the grand 
canonical free Bose gas (see Buffet and Puli 1983, Ziff et a/ 1977). 

Theorem 3. For the imperfect Bose gas in the family of cuboids described above (see 
(44)) and p > p,: 

where 

and & k  = $( k + I ) ~ T '  as above. 

Proof, As mentioned above, it is enough to compute the limit of the average of N: / V 
in the canonical free gas. Suppose p > pc and define the distribution function K "(x) 
as in Buffet and Pule (1983) 

where 
CO 

F" = - ( p V ) - '  c log{l -exp[-P(E: -E:)]}. 
k = l  

Then 

Put 

~ , ( r ] )  = ( I /  V )  max{k: r]: s 7.1) 

where r] :  =E: - - E r .  Then 

1 - exp( -A / V) 
exp[P(E,V - € : ) I 4  2 log( 1+ 

k = l  

can be written as 

(49) 

We split this integral up in an integral over the interval ( VZa2-', a) and one over the 
interval (0, V2a2-1]. First, consider the integral over the interval ( V2nz-1,  CO). It can 
be shown: (i) that for V large enough and all r] > V2a2-> there exists a constant c 
such that Fv(r]) s cq3" and (ii) F ( r ] )  = limv,, Fv(r]) = ( J 2 / 3 ~ ~ ) r ] ~ " ~ .  Moreover, for 
all positive x we have x - t x 2 c  log( 1 + x) < x. 
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Using these results, we then find 

where pc is the critical density of the ideal Bose gas and is also equal to 

1 
iomF(dv)exp(pv)-  1 '  

Now, consider the integral over the interval (0 ,  V2L12-1]. It is easy to see 
1imv+= VFv(dv/V)  exists and is equal to the measure concentrated on the points 
v k / p  and which gives weight 1 to each of these points. Then 

= k = l  f log( 1+;). 

More details can be found in Lewis et a1 (1983). Therefore 

exp(-Ax)KV(dx)=exp - Ap,+ log 1+-  
V-LX { [ k = l  ( : k ) l l  

=lox exp(-Ax)K(dx) (54) 

where 

That K ( x )  is indeed equal to (55) can be verified by induction on the number of levels v k  

and using the fact that the Laplace transform of a convolution product is the product of the 
Laplace transforms, i.e. 

fat  + E  

Now since K(x )  is continuous, we have limV4= K,(x) = K ( x )  for all X E R ,  and the 
measure Kv(dx)  also converges to K(dx)  for any bounded interval (Feller 1966). As in 
Buffet and Pule (19831, we have for the free canonical Bose at density p:  
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which, for p > pc, tends to 

This can be evaluated exactly; we find 

We now turn to the corresponding problem in the Bogoliubov approximation. 
Most of the proof of theorem 2 remains valid for our new family of cuboids (44). In 
particular, (36) becomes 

(591 

The expression (39) still converges uniformly (for U in compacts sets) to  a non-zero 
limit, namely 

g "( a )  = (1/ V)[( E l  - E ( , )  + V ( a  - a; "( a )  - E l /  V) -;a]. 

J --cc J --x 

(assuming p (  a )  3 pc + E ) .  

The contributions to  (41) which come from the integration over [-V'"(p(a)- 
E ? / a ) - 6 " ,  -V'"b] and [V"'b, ~ 3 )  still tend to  zero uniformly (for a in compact 
sets). The remainder is: 

exp [ p (  E ~ ) ~ / ~ U  VI VI'' exp [- t ap(8 ")'I 
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One can then prove the following results. For any interval of [pc+ E ,  CO) and for  any 
6, there exists a V, such that we have for all V >  V, and all a in this interval, 

(61) lBv- v 1 / 2  6 v (2rr /ap)" 'K(p(a)) l<fs  

1C"l < + a  (62) 

ID" - [2T/ (  ap)3 ] ' /2K ' (p (a) )  - v1/2s " (27r/ap)'12K(p( a)) l< fs (63) 

where (63) is derived using the mean value theorem. 

[ c ,  d ]  G [pc  + E ,  CO], we can find a V,, such that for all V > V, 
Using (61), (62) and (63), we thus get that, given a>O, 6 > 0  and an interval 

V ( a -  ap 'V(a)  + E ?  ) aS/ [K(p,+ &)(2T/ap)"*-  SI (64) 

Now by choosing S = U - *  and a large, we can make the upper bound (64) arbitrarily 
for all UE[C,  d ] .  Here we also used that K ' ( x )  2 0  Vx. 

close to 0 and consequently we can make 

( E 1  - E t , )  + V ( a -  a p V ( a )  + E y )-ha 

negative. The next proposition then follows immediately. 

Proposition 2. For the imperfect Bose gas in the family of cuboids described above 
(see (44)) and interaction parameter a large enough, the only possible limit points of 
{a:] are 0 and ( p ( ~ ) - - p J " ~ ;  consequently the limiting value of ( N r ) / V  is not a 
limit point of {(cy," j2}. 

4. A weakly interacting Bose gas with an energy gap 

The introduction of a gap in the one-particle energy spectrum of the Bose gas can be 
justified in several ways. First one can note that such a gap can be produced by the 
use of attractive boundary conditions in the definition of the one-particle free Hamil- 
tonian (Robinson 1976, Landau and Wilde 1979, Van den Berg 1982). Next, it might 
turn out that the interparticle interaction will cause a gap to appear in the excitation 
spectrum; as we admit a priori its presence we only deal with the part of the problem 
which consists in analysing the consequences of the existence of a gap. 

The free system with a gap is conveniently represented by the Hamiltonian 

H:, = H ;  -AN: A > O  (65) 
where HX is the ordinary free Hamiltonian on 9" constructed out of -+A on L 2 ( A " )  
with periodic boundary conditions (for technical simplicity). It is well known that (65) 
gives rise to macroscopic occupation of the ground state in any dimension (London 
1954). We undertake to prove in this section that this condensation phenomenon 
persists when an interaction is added, provided that the latter is not too strong (in a 
sense that we make precise now). 

Let U : R3 + R be a positive-definite integrable function, and put 

H," (P) = H:, + o % ~  - P ~ v  (66) 

%2l(gn)(X1, . . . ,  x,)= c g3Wg(x,-x,)) (g > 0). (67) 
where 

I s L <  , s  ,1 
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If one takes the infinite volume limit of the system described by the Hamiltonian (66) 
and afterwards the limit g + 0, one obtains the so-called van der Waals limit in which 
the system is equivalent to the infinite imperfect Bose gas with interaction parameter 
a =I,, dx U ( x )  (de Smedt 1983). Consequently, a model with small g can be con- 
sidered as a perturbation around the mean-field model. The grand canonical imperfect 
Bose gas is a sounder basis to perturb around than the grand canonical free Bose gas, 
because of the pathologies of the latter (see Buffet and PulC 1983, Ziff et a1 1977). 
An alternative possibility would be to perturb around the canonical free Bose gas, but 
we would then lose, together with the use of second quantisation formalism, the 
possibility of treating the problem in the Bogoliubov approximation. 

The mean-field Hamiltonian with a gap is 

H " (p  ) = H(yA + ( a /  2 V) ( N  ") - pN ". (68) 
The main result of this section is the following theorem. 

Theorem 4. For the interacting Bose gas described above (66) one has for F large 
enough and g small enough: 

N V  gc inter  

V-a,  lim inf (+) > 0. 
P 

Proof. As our main concern in this paper is the Bogoliubov approximation, we shall 
only sketch the proof of this theorem. If we define 

n,"(a)=(pV)- '  logTr3k e x p [ - p ( H r ( g ) + a N r ) ]  

n," (a, x)  = (pV)- '  log TrFv exp( - p { H v (  p )  + UN: + x[ qg - a ( N  " ) 2 / 2  VI}) 

then 

T: (a, 0) = (pV)- '  log T r f v  exp[-P(H"(p) + vN: 11 = nr(a) 
and 

nr(a, l ) = ( p V ) - ' l o g T r f v  exp[-P(H,"(p)+aN: ) ]=n;(a) .  

Using (27), one can get the explicit formula 

lim n:(a) = 
(+ 3 P + A -  a p ( p )  

{::?A - a I 2 / 2 a  +Po( - A) a < P + A - W ( P )  v-x 

where, as before, po(p)  denote respectively the pressure and the density of the infinite 
free Bose gas without a gap, and p ( p ) ,  p ( p )  the pressure and the density of the infinite 
imperfect Bose gas without a gap (see ( l l ) ,  (12)). 

Now, if we put 

PO = apo(-A) - A (74) 
we have, for p > po: 

Using methods similar to those we shall be using in theorem 5 (see also de Smedt 
1983), one can prove that for all a in any arbitrary interval and all E > 0, there exists 
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a constant C depending on p only, such that for V large enough and g small enough: 

IT,"((+) - T," ((7)1< g"+ E .  (76) 
Then, using the convexity of T,"(u) as a function of U, we obtain: 

Taking the limit lim inf v+s, we obtain the desired result. 

Now, denote by HzB ( p ,  a )  and H g  ( p ,  a )  the Bogoliubov appr6ximations to 
H," ( p )  and H V ( p ) .  Introduce the corresponding pressures: 

It is easy to check that 

where Cv is as in 9 2 .  Therefore 

P d p ,  a )  = lim P i  ( p ,  a )  = ha2 + (pa' - a a 4 / 2 )  + p ( p  - aa')  (81) v-x 

with p as in (11). From this the following properties follow: (with po as in (74)):  
(i) when p s po, a + P B ( p ,  a )  is strictly decreasing; 
(ii) whenp  > po,a + P B ( p ,  a )  takesitsmaximumat a o = [ ( p  -p,~)/a]"';itisstrictly 

increasing on [0, a") and strictly decreasing on ( a", a). 
We see that the presence of a gap suppressed the flat part in the Bogoliubov 

pressure of the imperfect Bose gas, thus making unambiguous the solution of the 
condensate equation. As a consequence, the condensate density should be asymptoti- 
cally degenerately distributed at (p- po) /a,  independently of the way the infinite 
volume limit is taken; this is indeed true, and the proof is very much like the one of 
theorem 1. 

Proposition 3. Let P r  denote the probability distribution of N r  / V for the imperfect 
Bose gas with a gap; then one has for any E > 0 

lim P,V(IN,"/V-CI>.s}=O 
V-CC 

where C = max(0, ( p  - p J / a } ,  with po as in (74). 
W e  cannot prove such a strong result for the weakly interacting system (66). W e  

only prove the weaker result that, for p large enough, a = O  is not a solution of the 
condensate equation (2) ,  not even in the thermodynamic limit. 

Theorem 5. Suppose p > po. The following results hold: 
(i) if g is sufficiently small, there exists a 6 > 0 such that for all V large enough 
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(ii) if the limit limv+, P r B ( p ,  a )  exists for all a and is equal t o  Pg,& a )  and if 
g is small enough, there exists a S > 0 such that 

p g , B ( k  a )  < pg,B(p7 a’ )  v a  E [O, 61. 

Proof. The proof consists in finding upper and lower bounds for P r B ( p ,  a )  and 
comparing the upper bound of P:B(p, a )  on the interval [ 0 , 6 ]  with the supremum 
over the lower bound of PEB(p, a ) .  

To obtain the upper bound we use the superstability condition in de  Smedt et a1 
(1983), de  Smedt (1983) namely for all > 0 there exists a V,, such that for all V >  Vo: 

Q g z  a ( ~ ” j ~ / 2 ~ ( 1 + ~ ~ ) - g ~ b ~ ”  (82) 

From this, it follows easily that we have for all E > 0 and for all a on an arbitrary 
where b = U ( 0 ) .  

compact interval 

p l B ( p ,  a)sPB(p+g3b, a ) + E  (83) 
if V is large enough. 

Bogoliubov approximation of the operator A and define 
Now, we look for a lower bound for P I B ( p ,  a ) .  As before, denote by A B ( a )  the 

f i ~ ’ ( ~ ) = ( p V ) - ’ l o g T r ~ : e x p  -P{H:(p+gg3b,  a )  i 
+ x[ qg B( a 1 - a (NB” ( a  ) )*/ 2 v + g bN,v ( a )I}). 

Then 

fi ” (0) = P,” ( p + g3 h, a )  

f i ” ( 1 , ) = p i : B ( p 7  

Moreover f i ” ( x )  is a convex function of x. Thus 

j L ’ (  1) -;yo) 3 j y ’  (0) 

or  

P L B  ( ~ L L ,  a )  a p ; ( p  + g’b, a )  + p:’ (0). 
Now, if 

Tr,27; A exp(-P[l?,y - p 6 ”  + a ( 6 ” ) * / 2 V ] }  
Tr  ; exp(-p[fi,:‘ - g f i ”  + a (fi ”)’/ 2 VI}  

G; ( A )  = 

(87)  
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One can prove as in de  Smedt (1983) ,  that 

(lixll denotes the norm of the vector x E R3) 

Thus, for  all a > ( y / u ) ’ ’ *  and all E > 0, there exists a V,, such that for V > Vo, we have 

p Z B ( P ?  a )3PB(P+g3b ,  a ) - f ( g ,  a ) - &  ( 9 5 )  

where 

Note that 
f f I=[ (P+ 
O < S < a ,  

f(g,  a )  + o as g + 0. Since a + p B ( ~  +g’b, a )  is strictly increasing up t o  
g3b-p~ , ) / a ] ’ ” ,  then, if E > 0 is sufficiently small, there is a 6 .satisfying 
such that 

( 9 7 )  PB(P + g’b, a )  < P B (  + g 3 b ,  (Y1) - 4 &  

provided a < 6. Also, if we choose g such that f (g ,  a l )  < E ,  as c y I  > ( y / a ) ’ l 2 ,  we obtain 
using ( 9 5 )  

p Z B ( P ~  a l )3PB(P*g3b,  a1)-2E (98) 

pZB(pL, a ?  < pg“, B(P,  

for V large enough. Combining (83),  ( 9 7 )  and (98) we have for sufficiently large V 

- E 

if a < 6, which implies both statements in the theorem. 
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Appendix 

We state without proof the following version of Laplace's theorem due to Lewis and 
Pule (1983b). 

Generalised Laplace theorem. Suppose that 
(i) VV>O:gV:iW++IWandg:iW+-,IWarecontinuousfunctionswithg(O) = A >  -CO; 

(ii) gv + g uniformly on compacts; 
(iii) d p  "(x) is a measure, being either the Lebesgue measure or dm(pVx) where 

m(x)=max{nEN: n s x } ( p > O ) .  

Then, if pm = limv,,(lim inf.,, x-'(infv,, v g v ' ( x ) ) ) ,  

exp[pV(px -g v(x))] dp "( V) = s u p  
v-= pv X € R  

we have for all p < pOc 
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